Can mantle convection be self-regulated?
نویسنده
چکیده
The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth.
منابع مشابه
The Quest for Self-Consistent Generation of Plate Tectonics in Mantle Convection Models
Plate tectonics and mantle convection are different aspects of the same, coupled system, yet mantle convection calculations do not exhibit plate tectonic behavior unless it is imposed by the modeler. This paper explores the quest for self-consistent incorporation of plate tectonics into mantle convection models, and presents new results and parameterizations. Simulations of convection with buoy...
متن کاملThe influence of mantle melting on the evolution of Mars
We present a parameterized convection model of Mars by incorporating a new heat-flow scaling law for stagnant-lid convection, to better understand how the evolution of Mars may be affected by mantle melting. Melting in the mantle during convection leads to the formation of a compositionally buoyant lithosphere, which may also be intrinsically more viscous by dehydration. The consequences of the...
متن کاملSteady plumes produced by downwellings in Earth-like vigor spherical whole mantle convection models
[1] If mantle thermal upwellings (plumes) are the cause of volcanic ‘‘hot spots,’’ then observations suggest that plumes are relatively fixed with nonuniform distribution and limited lifetimes. To date, fixity of upwellings has only been shown in models of convection at either low-vigor or with layering, though studies where the lower mantle has high viscosity do frequently show upwellings with...
متن کاملPlate Tectonics as a Far- From- Equilibrium Self-Organized System
Contained fluids heated from below spontaneously organize into convection cells when sufficiently far from conductive equilibrium. Fluids can also be organized by surface tension and other forces at the top. Plate tectonics was once regarded as passive motion of plates on top of mantle convection cells but it now appears that continents and plate tectonics organize the flow in the mantle. The f...
متن کاملEnergetics of mantle convection and the fate of fossil heat
[1] Reconstructing the thermal history of the Earth, consistent with the low concentration of heat-producing elements in convecting mantle as well as with modest secular cooling required by geological records, has been a major challenge in geophysics and geochemistry. By developing the self-consistent energetics of plate-tectonic mantle convection, we show that the low Urey ratio of convecting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016